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PERTURBATIONS OF REGULARIZING 
MAXIMAL MONOTONE OPERATORS 

BY 

ERIC SCHECHTER 

ABSTRACT 

We consider u'(t)+ Au(t)~/(t), where A is maximal monotohe in a Hilbert 
space /4. Assume A is continuous or A = 0q~ or int D(A ) ~ 0 or dim H < ~c. 
For suitably bounded f's, it is shown that the solution map /~  u is continuous, 
even if the/ 's  are topologized much more weakly than usual. As a corollary we 
obtain the existence of solutions of u'(t)+Au(t)~ B(u(t)), whcre B is a 
compact mapping in H. 

0. Introduction 

This pape r  is concerned  with cont inuous  dependence  for the initial value 

p rob lem 

(0.1) { u ' ( t ) + A u ( t ) ~ f ( t )  (O<=t<=T), 

u (0) = given, 

where  A is a maximal  m o n o t o n e  ope ra to r  in a Hi lber t  space H. Exis tence  of 

solutions of (0.1)is briefly reviewed in Section 1. (Some of the general  r emarks  in 

this introduct ion,  and the results deve loped  in this pape r  for cont inuous 

ope ra to r s  A, are appl icable in the more  general  context  of m-acc re t ive  ope ra to r s  

A in an arbi t rary  Banach  space.  See [10], [12] and the r emarks  in Section 5. For  

brevi ty,  however ,  in this paper  we shall only consider  Hi lber t  spaces.)  

Holding u(O)E D(A)  fixed, how does  the solution u of (0.I)  depend  on f ?  

The  s tandard  result  (see [2], [4], [8], for instance) is that the mapp ing  f ~ u is 

nonexpans ive  f rom L' ( [0 ,  T] ;  H )  into C([0, T] ;  H) .  Tha t  is, 

(0.2) }u,(t) - u2(t)l <= J,f ; lf,(~) - f2(cr)] do" 
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for 0-<- t =< T. But in certain contexts, a sharper result is possible: Define 

(0.3) 1[[[ [[[ = max fbf(cr)dcr[. 
O~ga..~b-r.T Jo l 

This is a norm on L~([0, T]; H),  substantially weaker than the usual one. Let 

f([0, T ] ;H)  be the vector space L~([0, T ] ;H)  retopologized, using the norm 

III Ill- For certain operators A, the mapping [ ~-, u is continuous from suitable 

subsets of .f ([0, T]; H)  into C([0, T]; H). Results of this sort are a variant of an 

idea originally due to Gihman [6]. Some other continuous dependence results of 

Gihman type can be found in [10], [12] and in references cited therein. The 

present paper gives further examples of operators A with this property. Let Jl ]l 

be the usual norm of L2([O,T];H). We shall show that if A is maximal 

monotone and either A is continuous or A = c~r or int D ( A )  ~ O or dim H < oo, 

then the mapping [ ~ u is continuous from II II-bounded subsets of f ([0, T]; H)  

into C([0, T]; H). 

The topology given by III III is weak enough that it has many compact sets. 

Indeed, 

if K is a compact convex subset of H, then 

(0.4) 
{/: Range(/) C_ K} is a compact convex subset of J" ([0, T]; H); 

see lemma 2 in [11]. Hence there does not seem to be much room for further 

weakening, since a compact topology is minimal among the Hausdorff topologies 

on a set. 

Because Ill III yields so many compact sets, our continuous dependence result 
can be used in fixed-point arguments. In this manner we prove the existence of 

solutions of 

(0.5) u'(t) + Au(t) ~ B(u(t)), 

where B is a compact operator in H. We remark that the theory of maximal 

monolone (or more generally, m-accretive) operators A and the theory of 

compact operators B have developed separately in the literature, and use very 

different techniques. Problems such as (0.5), involving the sum or difference of a 

monotone operator and a compact operator, have only been analyzed success- 

fully in certain special cases [1], [7], [I1], [12], and not in general. Additional 

special cases are given in the present paper. 

In Section 1, below, we briefly review some results already known about 
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maximal monotone operators and the initial value problem (0.1). This includes 

some specialized estimates which are applicable when A = Oq~ or i n t D ( A ) ~  O 

or dim H < ~. In Section 2 those estimates are replaced with a single, weaker 
estimate. In Section 3 we prove some results on the convergence of integrals. 

One of those estimates is used in Section 4 to prove a theorem on the continuous 

dependence of u on [ in (0.1). This theorem is quite sharp in several respects, as 

is shown by the examples in Section 5. The corollary in Section 6 says that (0.5) 

has a solution. 

The author is grateful to Haim Br6zis and the referee for some helpful 

suggestions. 

1. Review of maximal monotone operators 

The results stated in this section are proved in [2], [3], [4], [8]. Also given in 

those sources are numerous applications to nonlinear partial differential equa- 

tions. 

Throughout this paper, H will denote a real Hilbert space with norm I I and 

inner product ( , ). Then L2([0, T ] ; H )  is also a Hilbert space, with norm 

Ilfll-- {frlf(tr)12&r}"2 and inner product ((f, g)) = f~([(tr), g(tr))dtr. 
We consider multivalued mappings A : H ~ {subsets of H}. Such a mapping 

has effective domain D(A)={x  E H : A x ~ O }  and effective range R ( A ) =  

Ux~uAx. Its inverse is the mapping A - '  :H--~{subsets of H} defined by 

A ly = {x ~ H : y  E Ax}. For simplicity of notation we identify A with its 

graph; thus [ x , y ] E A  if and only if y EAx.  
A muitivalued mapping A C H x H is monotone if (x~ - x2, yl - y2) --> 0 for all 

pairs [x~, y~], [x2, y2] E A. It is maximal monotone if moreover it is not contained 

in any other monotone subset of H x H. 

Let A be maximal monotone. A strong solution of (0.1) is a continuous 

function u : [0, T] ~ D (A)  with the given value of u (0), such that u is absolutely 

continuous on compact subsets of (0, T] and, for almost every t in [0, T], u'(t) 
exists and lies in f ( t ) -Au ( t ) .  

A weak solution, or integral solution, of (0.1) is a continuous function 

u : [ 0 ,  T]--~D(A), with the given value of u(0), such that 

(1.1) [u(t)-xl2<-_lu(r)-xl~+2 ([(tr)-y,u(~r)-x)dtr 

for all Ix, y ] E A and 0 _-< r _--- t --- T. 

For each u(0) ~ D(A)  and [ ~ Lt([0, T]; H )  there is a unique weak solution u 
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of (0.1). For fixed u (0 )E  D ( A ) ,  the weak solutions u~ and u2 corresponding to 

forcing terms fl and f2 satisfy (0.2), and also 

(1.2) lu,(t)-u2(t)[2<=2 jo' (f~(tr)-[2(tr),uz(tr)-u2(tr))dtr 

for 0 =< t =< T. 

Every strong solution is a weak solution. Conversely, certain conditions are 

known to imply that a weak solution is a strong solution. For instance, this is the 

case if f has bounded variation and u (0)E D (A). Since functions of bounded 
variation are dense in L 1([0, T]; H),  the weak solutions are a natural generaliza- 

tion of strong solutions. 

If the operator A satisfies certain additional hypotheses, then the weak 

solution u of (0.1) will have some additional regularity property, beyond just 

being continuous. Then we say A is regularizing. For instance, if D(A) has 

nonempty interior, then for every u(O)ED(A) and fEL'([O,T];H) the 

solution u has bounded variation. In fact, we have this estimate: 

(1.3) Var(u;[0,  Tl)_---~p p+lu(O)-vol+ TM+ t[(cr)td~r . 

(See inequality (42) on page 80 of [4].) Here Vo is any element of int D ( A ) ,  and 

M and p are positive constants which may depend on A and vo but not on jr or 

u(0). 
The same conclusions hold if A is any maximal monotone operator in a finite 

dimensional Hilbert space H. We shall sketch the proof, the main ingredients of 

which are given in [4]. By translation, we may assume [0, 0] ~ A. (This may attect 

the values of M, Vo, and p, but is otherwise without loss of generality.) Let Ho be 

the span of D(A), and let P be the orthogonal projection onto Ho. Let 
Ao = A fq (Ho x Ho); then D ( A 0 ) =  D(A). Since A is maximal monotone in H, 

it follows that [x, y] E A ~ [x, Py] E A0, and that Ao is maximal monotone in 

the Hilbert space Ho. 

By results on pages 32-33 of [4], the domain of A0 has nonempty interior in 

H0. Now let u be the weak solution of (0.1). Then u(~r) takes values in 

D(A)CHo, so for all [x,y]EAoCA we have 

lu(t)-xl2-1u(r)-xl2<=2 r, u ( , 0 -  

fr t = 2  
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for 0 =< r -< t < T. Thus u is also the solution, in H0, of the initial value problem 

( u ' ( t )+Aou( t )~Pf ( t )  (0 <- t <= T), 

u (0) = given. 

Since IPf(t)l <= If(t)l, inequality (1.3) follows. 

For another example of regularization, let ~ :H--> (-o% + ~] be a convex, 

lower semicontinuous function. Also assume that ~ is proper, i.e. that its effective 

domain D(~)  = {x E H : q~(x) < + ~} is nonempty. Then the subdifferential of ~, 

defined by 

O~o = {[x, z] E H x H : ~o(w) - q~(x) _-> (z, w - x) for all w E H}, 

is a maximal monotone operator in H. In the remainder of this paper we shall 

abbreviate these assumptions about an operator A by simply writing A = 0~. 

Many nonlinear parabolic differential equations can be written in the form (0.1) 

with A = 0q~; see [2], [3], [4], [8] for examples. 

The operator a~ is regularizing. If A = 0~ and f EL~-([O,T];H) and 

u(O) E D(A) ,  then the weak solution of (0.1) is a strong solution. Moreover, it 

satisfies this estimate: for any z E R(a~), 

~lu'(a)rd~ _-< o-}f(o.)-zrdcr + [f(o-)-zldo- 
) 

(1.4) 
1 

+ ~ dist(u (0), (a~)-~(z)). 

This inequality is given in [2], [3], [4], [8], in the particular case where 

m i n { ~ ( x ) : x E H } = O  and z =0 .  To reduce the problem to that case, we 

proceed as indicated in [2], [4]: Fix any y E (a~o)-~(z). Define ff : H---> ( -  o0, +~]  

by ( ~ ( w ) = ~ ( w ) - q ~ ( y ) - ( z , w - y ) .  Then min{(o(x ) :x~H}=O and 

0 ~ R ( a r  and u is the solution of u' ( t )+(a(~)(u( t ) )~f ( t ) -z .  Then (1.4) 

follows. 

Still another class of regularizing maximal monotone operators A are those 

for which 

(1.5) A is single-valued and continuous, and D (A) is closed. 

By "single-valued" we mean that for each x ~ H, Ax  contains at most one point. 

If (1.5) holds, u (0)E D(A) ,  and f ~ L2([0, T] ;H) ,  then the weak solution of 

(0.1) is a strong solution; and moreover it is continuously differentiable on [0, T]. 
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(2.2) 

PROOF. 

Then 

A more general class of initial value problems in an arbitrary Banach space is 

studied in [10]. 

2. Reduction to a single estimate 

The remainder of this paper will be devoted to some consequences of (1.3) and 

(1.4). To avoid repetition we shall replace Var(u ; [0, T]) and fgcrlu'(~r)12&r by a 

single, more complicated quantity which is in some sense dominated by both of 

those expressions. We shall hold T > 0 fixed. For 0 < a < T and positive integers 

n let Oj = O,(a) = a + ( j / n ) ( T -  a)  (j = 0 , 1 , 2 , . " , n ) .  Thus a = O0< 0~ < ' "  < 

On = T, and Oi -Oj_t = ( T - a ) / n  for all j. For u ~ C ( [ O , T ] ; H )  let 

(2.1) Q ( u )  = sup sup na ~ u ( c r ) -  u(O~_~(a))12&r. 
a E ( O , T )  n- - l ,2 , . . .  ~ 1  dO~_l(a ) 

LEMMA 1. Let u ~ C([0, T ] ; H )  have bounded variation. Then 

O (u) _-< �89 T2{] u (0) 1 + Var(u ; [0, T])} 2. 

Fix any a U(0, T) and any positive integer n. Let h = ( T - a ) / n .  

n a  ] u ( c r ) -  u(O~_,(a))12&r = na ]u(es-,(a)+ s ) -  u(e~_~(a))t2ds 
j - I  ./aT_da) 

=< na fo h 2 It u IIsop Var(u ;[0, T])ds 

= 211 u Hsopa ( T -  a)Var(u ; 10, T]) 

< �89 T2{I u (O) l + Var(u ; [0, T])} ~. 

LEMMA 2. Let u • C([0, T] ;H) .  Suppose u is absolutely continuous on com- 

pact subsets of (0, T]. Then 

(2.3) O(u)<= T ,~lu'(~)l=d,r. 

PROOF. Fix any a E(0,  T) and positive integer n. Let 0, = 07(a). Then 

j~ ~ I u(o-)- u(0~_,)l~ao- = f~, ' 
- I  -I 

- I  

Now (2.3) follows immediately. 

12 u'(s)ds dot < [u'(s)[2dsdor 
-1 - I  -1  

- s)] u'(s)]2ds < T - a (~ (Or = s I u'(s) 12ds. 
nO Joj_l 
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REMARK. From inequalities (1.3) through (2.3) it follows that if A = Oq~ or 
int D ( A ) ~  0 or dim H < o% and f is permitted to vary in a bounded subset of 
L2([0, T] ;H) ,  and u is the solution of (0.1) with u(0) held fixed, then Q(u) 
remains bounded�9 

It is not known whether a similar estimate can be proved when A = A1 + &p, 

with AI maximal monotone and int D(AI) n D(0q~) ~ O, although in that case A 

is known to be maximal monotone [4]. 

3. Convergence of integrals 

Recall that a sequence or net {f.} converges weakly in LZ([0, T]; H)  to a limit f 

if ((f. - f ,  g ) ) ~  0 for every g E L 2([0, T]; H). Hereafter this convergence will be 

denoted by f. -~ f. 

This section gives some consequences of Ill III-convergence, where III Ill is 

defined as in (0.3). The Ill Ill-convergence is similar to weak convergence, as is 
shown by the proposition below. However, in the study of continuous depen- 

dence results such as those in Section 4, Ill Itl-convergence is more appropriate 
than weak convergence; this is shown by Examples 1 and 2 in Section 5. 

PROPOSmON. Let {f.} be a sequence (or more generally, a net) in 
L2([0, T]; H);  and let f E L2([0, T]; H). Then: 

(a) If sup. IlL l[ < ~  and fill - f  Ill --+0 then f. --~f. 
(b) If U ,  Range(f,)  is a relatively compact subset of H, and f . -~  f, then 

Ill f, - f Ill--+ O. 

PROOF OF (a). Suppose g : [0, T]--* H is a step-function; i.e., g takes some 

constant value g, on each subinterval (t,_,, t,) of some partition: 0 = to< tl < 

�9 . . < t , . = T .  T h e n a s  n ~ ,  

If, I I ( ( f , - f ,g)) l<=~ [ f . (s) - f (s) lds  Ig, l_- < I l lf . -f i l l  ~ l g ,  I ~ 0 .  
i = 1  i t i = 1  

Such step-functions are dense in L2([0, T]; H);  hence (a). 

PROOF OF (b). Immediate from (a) and (0.4). 

Suppose f,---~f| and u.--~ v in some Hilbert space with inner product 

(( , )). In general, we cannot conclude that ((/,, u. )) ---~ ((/| v )). But that 

conclusion does hold if one of the sequences {/,}, {u.} lies in a compact subset of 

the Hilbert space. It also holds if each of the sequences {f.}, {u.} satisfies some 

condition slightly weaker than compactness; then each of the sequences "corn- 
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pensatcs" for the other. An example of this principle of "compensated compact- 

ness" is given in the lemma below. Other examples can be found in [9], [13] and 

in papers cited therein. 

LEMMA 3. Let {fo } be a net (i.e., a generalized sequence) in L2(]0, T]; H). Let 

{u~} be a net in C([0, T]; H), indexed by the same directed set {a}. Also let f~ and 

v be elements of L2([0, T]; H). Assume III fo - f~ II1-" o and Uo -~ v. Also assume 

that c,=supollLII, c 2 = s u p . O ( u . ) ,  and c,=sup,.sup..lu,~(cr)] are all finite. 
Then 

f [  q~(~),u~(~))d~ ~ f[  ff=(~),v(~))d~ 

as a ~ ~, uniformly for all a, b E [0, T]. 

PROOF. For O<=r<=t<=T, we have [f',ffo(s),u~(s))ds[<=c3f',lfo(s)[ds<= 
c , c ~ / t - r .  This converges to 0 when t -  r--~0, uniformly for all a. Hence the 

functions (a, b) ~ f~(f~, u~) are uniformly cquicontinuous on [0, T] • [0, T]. 

Hence it suffices to show f ] ( f . ,  u.)  converges to ff,(f=, v) for fixed a, b; and we 

only need to consider a and b in a dense set. Thus we may fix a, b ; and we may 

assume 0 < a < b _-< T. In fact, we may assume b = T; for then the general case 

can be recovered by subtracting thc results obtained for two different values of a. 

Let X be the characteristic function of the interval [a, T]. 

Temporarily fix some positive integer n. Define 0, -- O,(a) as in Section 2. For 

f = f o  o r f = f ~ w e  have 

ff(~), uo ( ~ )  - u~ (Oj_,))d~ 
j=l I 

- ~ ]  rf(~)t [ ~ r  uo ( ~ ) -  uo (O,-,)J]d~ 

< - Z  If(or) ['~/-nlu,,(cr)-u,,(Oj_,)l] 2 do" 
.i ~ 1  Oi I 

] =2~nn Ilfll-~ a O(uo) . 

Hence, by several applications of the triangle inequality, 

<--2,~/-n Uo 1[-' + ~-~x/-n Ilfdl~ + ak/nl-Q( u~ ) 
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+ fo~G(~), uo (~) -  v(~))d~ 

+ ~  [u~(O~ b~ ( o 0 -  f d ~ ) ] d o  - 
i = T  [ 

1 2X/n c~ + IIf~ll -~ + a 

+ I ((xf~,  u~ - v)) l  + nc ,  [11 f~ - f~ [1[. 

Hold n fixed and take limits as a ~ .  We obtain 

l imsup[ fo"G(~176176176176176 < ,,~ ~ 1 [c ~ + ['f~][2 +"2aC--~2 ] 
/ V ~  ~ 

Now let n - - ~ .  This completes the proof. 

4. Convergence of evolutions 

THEOREM. Let A be maximal monotone in H. Assume that (1.5) holds or 
i n t D ( A ) , ~ O  or d imH < ~  or A =c9~o. Let u(O)ED(A) .  Then the solution 
mapf  ~ u for the initial value problem (0.1) is continuous from [I H -bounded 
subsets of f([0,  T]; H),  into C([0, T]; H).  

PROOF. Let {fk} be a bounded sequence in L~-([O,T];H), and let f~E  

LZ([0, T]; H).  Let {u~} and u~, be the corresponding solutions of (0.1). Assume 

that Ill fk - f ~  [1[-" 0. We are to show that uk-+ u~ uniformly on [0, T]. 

We first consider the case in which (1.5) holds. We shall apply proposition 6.5 

of [10], with D = D(A)  and Ap(s,x)= A(x)+fp(s) .  All of the hypotheses of 

that proposition are immediately satisfied except (6.8). An inspection of the 

proof of that proposition shows that (6.8) can easily be replaced by the condition 

lim sup sup supIA~(s,y) lds=O 
h ,~0 0--<b-a_<h p y ~ K  

for compact sets K C D. This is clearly satisfied in the present context, since 

fj / '2 If,(s)[ds <-{b - a }  "2 [f,(s)[2ds _-<{b - a}"2 sup  IIf~ II . 
k 

Hence uk --~ u~ uniformly on [0, T]. 

We now turn to the case where i n t D ( A ) ~  or d i m H < o o  or A = aq~. It 

suffices to show that some subsequence of {u~} converges uniformly to u| For, if 

{[luk-u~[lsu,} does not converge to 0, then it can be replaced with some 
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subsequence which is bounded away from 0; and then no subsubsequence of that 

subsequence can converge to 0. 

From (0.2) we have 

luk(t)-u| If,(cr)-f.(tr)ldtr 

Hence the uk's are uniformly bounded. Passing to a subsequence, we may 

assume that {uk} converges weakly to some limit v E LZ([0, T ] ;H) .  

From (1.2) we have 

luj(t)-uk(t)12<=2 (~(cr)--[k(~),us(~r)--Uk(cr))d~. 

The nets ~ - [ , }  and {uj - UE} satisfy the hypotheses of Lemma 3. Here the net 

III 011-converging to 0, and ( u j -  u,)-e-~0. Hence the above integral 
converges to 0, uniformly for all t in [0, T]. Therefore {uk } is a Cauchy sequence 

in C([0, TI; H) .  Hence uk ~ v uniformly on [0, TI. Therefore v is continuous, 

and v (0) = u (0). 

From (1.1) we have 

f, luk(t)--xl2<=luk(r)--xl2+2 (fk(cr)--y, uk(cr)--x)dor 

for all 0 ~ r =< t =< T and [x, y] E A. Apply Lemma 3 again; we obtain 

I Iv(t)-xl2<=lv(r)-xl2+2 (f,(or)-y,v(cr)-x)dm 

Thus v is the weak solution of (0.1) for [ = [~. That is, v = u~. This completes the 

proof. 

5. Examples and remarks 

The examples in this section show that the theorem of Section 4 is sharp in 

several respects. 

EXAMPLE 1. The weak and III Ill-topologies on L2([0, T ] ; H )  are not com- 

parable: Neither of their convergences implies the other. 

For an example in which III fn III---' 0 but {f~/does not converge weakly, let 

H=R,  T=20r ,  and f.(t)=nl/2sin(nt). Then Illf, III but Ilfnll= 
X/nzr--->oo. Any weakly convergent sequence is bounded; so {f,} does not 

converge weakly. 
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For an example in which f i - ~ 0  but {f~} does not III Ill-converge, take 

H = L 2 ( R ; R ) ,  and take any T > 0 .  Then by lemma II1.11.16 of [5], 
L 2([0, T]; H)  = L 2([0, T] • R ; R)  = L 2(R ; L 2([0, T]; R)). Let any ~o E n other 

than 0 be given. Let ~n(O)=~o(O-n) ,  for all O E R .  Then s r ~ H  with 

I = I 01 > 0 for all n, so {~,} does not converge strongly to 0. It is easy to verify 
that {~, } converges to 0 in the weak topology of H. Now define fi E L2([0, T]; H )  

by taking [~(t) = sr~ for all t in [0, T]. Then [, --~0; hence sup, lifo I1< . By part 

(a) of the proposition in Section 3, if {fi} is III Ill-convergent, then it is weakly 

convergent to the same limit; hence that limit must be 0. But III jro III = Tirol > 0 

for all n, so the sequence {f~} does not III Ill-converge. 

EXAMPLE 2. A simple observation shows that III III-convergence is approp- 
riate for continuous dependence results for (0.'1). Let (1.5) hold, and let 

u (0)E D ( A ) .  Let {f~ } and f| be any elements of L ~([0, T]; H),  and let {u~ } and 
u~ be the corresponding solutions of (0.1). Then 

(5.1) Iluo- u.ll o  0 Illf,-f.[[I---,0. 

PROOF By assumption, un ~ u |  uniformly on [0, T]. Since the un's are 

continuous, K = I_J~.l Range(u,)  is relatively compact. Since A is continuous 

on D (A), it is uniformly continuous on K. Hence A o u~ ~ A o u| uniformly on 

[0, T]. Therefore 

f i ( s )ds  = u , ( b ) - u ~ ( a ) +  A(u , ( s ) )d s  

jab job ~ u~(b) - u| + A (u~(s))ds = f| 

uniformly for all a, b in [0, T]. 

EXAMPLE 3. Conclusion (5.1) does not hold for the other classes of operators 

A considered in Section 4. In fact, for those classes, the solution mapping jr ~, u 

need not be injective. For a simple example of this, let H = R. Let A ( 0 ) =  
[ - 1 ,  1], and let A ( x ) =  sign(x) for x ~  0. Then A is maximal monotone. We 

have A = 0q~, where ~o(x)= Ix I is convex, lower semicontinuous, and proper. 

Also D ( A )  = H has nonempty interior, and H = R has finite dimension. Now 

let u(0) = 0, and let jr be any measurable map from 10, T] into [ - 1, 1]. There are 

many such jr's, but for all of them the solution of (0.1) is u = 0. 

EXAMPLE 4. The continuous dependence result proved in Section 4 for 

certain classes of A ' s  does not hold for an arbitrary maximal monotone operator 
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A. It fails in the following example (which was given in [12] for a slightly 

different purpose). Let H = L : ( [ -7 r ,  7r];R). Elements of H will be viewed as 

functions x(O) defined for all 0 E R, periodic in 0 with period 27r. Let A = 0/00, 

with periodic boundary conditions. That is: (Ax )  (0) = x'(O), with D (A) = {x : x 

is absolutely continuous on [ - T  r, zr], x ( - 7 r ) =  x(fr), and x ' E  H}. Then A is 

linear, densely-defined, and maximal monotone. A is skew-adjoint, and is the 

generator of a group of isometries e'A. These are the translations [e'Ax] (0)= 

x(t+o). 
For each positive integer n, define f ,:[O,T]---~H by taking fn(t ,O)= 

sin(nt - nO) for t E [0, T], 0 E [ -  m 7r]. Let f~ = 0. The reader can verify that 

supntlfnll<~176 and IIIfn-f~lll--'0. 
Let u(0) = u(0, 0) = 0 (0 E [ - 7r, 7r]). Let {u~} and u~ be the solutions of (0.1) 

corresponding to forcing terms {f~} and f~. Then it is easy to show that 

u , ( t , O ) = t s i n ( n t - n O )  for n = 1 , 2 , 3 , . . . ;  but u~=0 .  Hence {u,} does not 

converge in C([0, T ] ; H )  to u~. 

6. Compact perturbations 

Finally, we shall apply our continuous dependence results to the initial value 

problem 

(6.1) { u ' ( t ) + A u ( t ) ~ B ( u ( t ) )  (O<=t<=T), 

u (0) = given, 

where B is a compact mapping. The illustrative corollary below is chosen for its 

simplicity, not its generality. It is not yet clear what is the broadest possible 

version of this theory. Results in [1] permit B to be time-dependent and 

set-valued, but impose some other restrictions not made here. Some other 

related results have also been obtained, by a different method, in [7]. 

It is not yet known whether conclusion (b), below, is valid for an arbitrary 

maximal monotone operator A. The analogous question for m-accretive 

operators in an arbitrary Banach space also is still open; see the introduction to 

[121. 

COROLLARY. Let A be a maximal monotone operator in a Hilbert space H. 

Assume (1.5) holds or A = Oq~ or int D (A ) ~ fD or dim H < oo. Let u (0) ~ D (A ), 

and let T > O. Then : 

(a) Let K be a compact convex subset of H. Let F = 

{ fELl ( [0 ,  T];H):Range( f )C_K},  and let F be topologized as a subset of 

f ([0, T]; H). For each f ~ F let uf be the corresponding solution of (0.1). 
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Then F is compact, and the mapping [ ~ u I is continuous [rom F into 

C([0, T]; H). Hence {ur : [  E F} is a compact subset o[ C([0, TI; H); and so 

{u 1 (T) : [ ~ F} and {ul (t) : f ~ F, t E [0, T]} are compact subsets o[ H. 

(b) Let L be a compact subset of H. Let B : D ( A  )---~ L be continuous. Then 

there exists at least one solution o[ (6.1). 

PROOF. Part (a) is immediale from (0.4) and the theorem in Section 4. For 

part (b), let K be the closed convex hull of L. Then K is compact and convex, 
and the results of part (a) are applicable. The mapping v ~ B o v is easily seen to 

be continuous from C([0, T]; H) into F. Composing it with the mapping [ ~ ul, 

we obtain a continuous mapping from F into F. The set F is compact and 

convex. By the Schauder-Tychonofl Fixed Point Theorem [5], that composition 

has a fixed point. That is, there exists at least one [ E F such that B o ur = ]'. Then 

ul is a solution of (6.1). 
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